用于细胞代谢检测的640 × 640 ISFET阵列
用于甲基苯丙胺检测的超灵敏晶体管生物传感器
用于生物化学检测的微悬臂梁传感器
新型核酸检测生物传感器及其在鲑鳟鱼类病毒性疫病检测中的应用前景
半导体生物传感器在病毒性人畜共患病检测中的应用与展望
用于病毒检测的生物功能化半导体量子点
基于汗液生物传感器的健康监测可穿戴纺织品
III族氮化物宽禁带半导体的高效p型掺杂新途径研究
钙钛矿量子点固体薄膜原位可控合成新策略
硅基94GHz多通道相控阵芯片组
官方微信
友情链接

基于GaAs太阳电池的纳米球表面阵列

2020-01-10

 

GaAs半导体材料是一种重要的光电材料,由于它的直接带隙和高载流子迁移率等优良特性,该材料通常用于制造高效太阳能电池。众所周知,可以利用表面织构化减少表面反射来提高太阳能电池对光的吸收,从而提高电池的转换效率。近年来,各种表面织构化用于高效太阳电池制作中,比如有蜂窝状,金字塔形,倒金字塔形和V形沟槽结构。但是,这些方法不能应用于GaAs太阳能电池表面织构化。一方面与硅相比,其晶面在<001>表面上,不能自发产生表面锥体结构。另一方面GaAs表面复合较大,如果直接刻蚀表面,会引起较大的表面复合。另外,通过等离子等技术实现周期性表面阵列,会进一步增加了生产成本。因此,在GaAs太阳能电池的表面制作具有简单,方便的减反射的表面织构化结构仍然是一个挑战。我们发现可以通过自组装方法在GaAs的表面材料沉积一层具有周期性结构的纳米球阵列,基于纳米球阵列对光的散射及衍射作用,可以明显增加光子在电池内的传播路径。此外,纳米球还可以根据需要易于改变几何参数等优点,从而方便制作,并且该方法是构建二维周期性结构的最简单方法之一。

在这项工作中,浙江工业大学信息工程学院彭银生教授等对二维纳米球表面阵列对GaAs太阳能电池特性影响进行了理论仿真和分析。研究发现纳米球的材料,大小及分布是影响太阳能电池转换效率的关键参数。结果表明,相邻纳米球(D)的距离对转化效率影响很大,当D从0到1 μm变化时,转化效率降低超过2%,最低转换效率<18%,但当d>2 μm时几乎保持不变,具有较差的制作容差性。纳米球的半径(R)表现出很好的制作容差性。例如对于D=0,纳米球半径在0.3 μm至1.2 μm非常宽的变化范围内,效率变化不到1%,并且太阳能电池仍然表现出非常高的转换效率(>20%)。我们还发现,在最佳折射率(n=2.1)附近,材料的选择有很好的容差性,材料折射率在±24%的变化内,电池效率变化仅约0.2%。以上研究表明不需要高精度的加工设备,纳米球阵列可以使用自组装化学方法进行制作完成。本工作不仅可以应用于GaAs太阳电池上,也可以用于其它材料太阳电池上,对于制作各种太阳电池减反射膜具有一定的指导作用。

图1 纳米球阵列GaAs太阳电池原理图

Nano-sphere surface arrays based on GaAs solar cells

Yinsheng Peng, Shufeng Gong, Kai Liu, Minghai Yao

J. Semicond. 2020, 41(1): 012701

doi: 10.1088/1674-4926/41/1/012701

Full Text

(来源:半导体学报公众号)



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明