A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Deep insights into interface engineering by buffer layer for efficient perovskite solar cells: a first-principles study

2020-05-21

 

Author(s): Huang, L (Huang, Le); Dong, HF (Dong, Huafeng); Huo, NJ (Huo, Nengjie); Zheng, ZQ (Zheng, Zhaoqiang); Deng, HX (Deng, Hui-Xiong); Zhang, G (Zhang, Gang); Cheng, Y (Cheng, Yuan); Li, JB (Li, Jingbo)

Source: SCIENCE CHINA-MATERIALS DOI: 10.1007/s40843-020-1322-2 Early Access Date: APR 2020

Abstract: Recent years have seen swift increase in the power conversion efficiency of perovskite solar cells (PSCs). Interface engineering is a promising route for further improving the performance of PSCs. Here we perform first-principles calculations to explore the effect of four candidate buffer materials (MACl, MAI, PbCl2 and PbI2) on the electronic structures of the interface between MAPbI(3) absorber and TiO2. We find that MAX (X = Cl, I) as buffer layers will introduce a high electron barrier and enhance the electron-hole recombination. Additionally, MAX does not passivate the surface states well. The conduction band minimum of PbI2 is much lower than that of MAPbI(3) absorber, which significantly limits the band bending of the absorber and open-circuit voltage of solar cells. On the other side, suitable bandedge energy level positions, small lattice mismatch with TiO2 surfaces, and excellent surface passivation make PbCl2 a promising buffer material for absorber/electron-transport-layer interface engineering in PSCs. Our results in this work thus provide deep understanding on the effects of interface engineering with a buffer layer, which shall be useful for improving the performance of PSCs and related optoelectronics.

Accession Number: WOS:000530267400002

ISSN: 2095-8226

eISSN: 2199-4501

Full Text: https://link.springer.com/article/10.1007/s40843-020-1322-2



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明