A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs

2020-05-29

 

Author(s): Wei, QG (Wei, Qingguo); Zhu, S (Zhu, Shan); Wang, YJ (Wang, Yijun); Gao, XR (Gao, Xiaorong); Guo, H (Guo, Hai); Wu, X (Wu, Xuan)

Source: INTERNATIONAL JOURNAL OF NEURAL SYSTEMS Volume: 30 Issue: 5 Article Number: 2050020 DOI: 10.1142/S0129065720500203 Published: MAY 2020

Abstract: Canonical correlation analysis (CCA.) is an effective spatial filtering algorithm widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). In existing CCA methods, training data are used for constructing templates of stimulus targets and the spatial filters are created between the template signals and a single-trial testing signal. The fact that spatial filters rely on testing data, however, results in low classification performance of CCA compared to other state-of-the-art algorithms such as task-related component analysis (TRCA). In this study, we proposed a novel CCA method in which spatial filters are estimated using training data only. This is achieved by using observed EEG training data and their SSVEP components as the two inputs of CCA and the objective function is optimized by averaging multiple training trials. In this case, we proved in theory that the two spatial filters estimated by the CCA are equivalent, and that the CCA and TRCA are also equivalent under certain hypotheses. A benchmark SSVEP data set from 35 subjects was used to compare the performance of the two algorithms according to different lengths of data, numbers of channels and numbers of training trials. In addition, the CCA was also compared with power spectral density analysis (PSDA). The experimental results suggest that the CCA is equivalent to TRCA if the signal-to-noise ratio of training data is high enough; otherwise, the CCA outperforms TRCA in terms of classification accuracy. The CCA is much faster than PSDA in detecting time of targets. The robustness of the training data-driven CCA to noise gives it greater potential in practical applications.

Accession Number: WOS:000531871600003

PubMed ID: 32380925

ISSN: 0129-0657

eISSN: 1793-6462

Full Text: https://www.worldscientific.com/doi/abs/10.1142/S0129065720500203



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明